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Motivation

➢ Continuous (24/7) moored data collection 
➢ Commissioned since 2015
➢ Committed to 25+ years of operation
➢ Multiple instruments simultaneously sensing 

the environment 
➢ Upward looking echosounders (200m)

How can we extract information from these long-term time series?



Low-dimensional Representation of Echograms 
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https://docs.google.com/file/d/1cFq7v5nNfOqRdNxYhy91AI65tA8zMvEi/preview
https://docs.google.com/file/d/15W0vsaoHglGsEhS-GLiL4bTkNnqBN2Qw/preview


Data Outliers

Decomposition analysis (such as Principal Component Analysis) on data with outliers yields a corrupted 
result, as the magnitude of the outliers can dominate the cost.

Ocean profiler
2 months of data: Aug 17- Oct 17, 2015 



Robust Principal Component Pursuit for Outlier Removal

❏ Candes’09 Robust Principal Component Analysis?

Low rank Sparse

If such a decomposition exists the solution can be found exactly, no tuning of      needed! 

Nuclear Norm:

Entrywise L1-norm:

Rank:

(Sonar Patterns)     (Profiler Artifacts)

https://arxiv.org/abs/0912.3599


Robust Principal Component Pursuit for Outlier Removal

Raw Data (X)

Low Rank Component (L)
Denoised Data



Robust Principal Component Pursuit for Outlier Removal

Sparse Component (S):

➢ Some signal is in the sparse component.
➢ There is intrinsic variation in the low rank patterns over time.
➢ Not crucial for extracting dominant patterns.



Nonnegative Matrix Factorization (NMF) for Echogram Pattern Discovery

DataWeights/ActivationsLatent Variables/
Components

X

➢ Total backscatter is built of backscatter of individual components
❏ Lee et.al., Learning the parts of objects by nonnegative matrix factorization

https://www.nature.com/articles/44565


Temporally Smooth NMF

Smooth Activations Sparseness

❏ Fabregat et. al., solving NMF with smoothness and sparsity constraints

❏ Python Package: https://pypi.org/project/time-series-nmf/

https://arxiv.org/abs/1910.14576
https://pypi.org/project/time-series-nmf/


Sonar Data Reorganization for Matrix Decomposition



NMF Results

 

#1: DVM  (zooplankton-like)
#2: Subsurface Layer (zooplankton-like)
#3: fish-like



In a Nutshell

➢ Robust PCA is powerful for automatically removing outliers.

➢ Nonnegative Matrix Factorization discovers biologically meaningful temporal patterns.

More details:
■ Lee W.-J., Staneva V., Compact representation of temporal processes in echosounder time series via 

matrix decomposition

Ongoing and Future Work:

➢ Expand to years of Ocean Observatories Initiative data
➢ Analyze with conjunction with other environmental variables

https://asa.scitation.org/doi/10.1121/10.0002670
https://asa.scitation.org/doi/10.1121/10.0002670


Extra



Effect of Smoothing Parameter



L-curve Method for Selecting Regularization Parameters

Trade-off between minimization cost and smoothness.

(point cloud correspond to multiple runs )

Oraintara, S., et. al., A method for choosing the regularization parameter in generalized 
Tikhonov regularized linear inverse problems

https://ieeexplore.ieee.org/document/900900
https://ieeexplore.ieee.org/document/900900


Robust Principal Component Pursuit for Outlier and Noise Removal

(Zhou et.al, Stable Principal Component Pursuit)

Instead Assume: 

Low rank Sparse Noise

Small noise:                   we can solve the following problem

“Stable”: small noise => small reconstruction error

Extra parameter that needs to be tuned! https://github.com/ShunChi100/RobustPCA/

https://arxiv.org/abs/1001.2363
https://github.com/ShunChi100/RobustPCA/


Tensor Decomposition of Sonar Data

Treat each dimension separately?

Matrix decomposition => Tensor Decomposition



Kruskal Tensor Decomposition

2D decomposition as a sum of outer products (SVD):

3D decomposition as a sum of outer products (higher order SVD)

Cichocki, A. et. al., Tensor Decompositions for Signal Processing Applications: From Two-way to Multiway Component Analysis

https://ieeexplore.ieee.org/document/7038247


Kruskal vs Tucker Tensor Decomposition

Kruskal Decomposition:

Tucker Decomposition:



Tensor Decomposition Results

Automate heuristic methods based on thresholding rules about the  
frequency response which depend on  correct calibration.

Kruskal Nonnegative Tensor Decomposition

tensorly package

http://tensorly.org/stable/installation.html


Tensor Decomposition Considerations

The rank-1 constraint of the Kruskal Decomposition is very limiting:

➢ Maximum 3 components (the lowest dimension)

➢ Components should have the same frequency response

➢ More noise in the reconstruction

The solution is almost certainly unique (as opposed to matrix decomposition)

Better suited for broadband data: many frequencies



Future: Many Large Datasets to Analyze



Future: Emerging, Evolving, and Fading Patterns

Within long time series the patterns are gradually changing over time:

➢ Add constraints on the patterns W (as opposed to the activations).



Future: Application to Ship Data

Ship is moving!
➢ Bottom variation
➢ Environment variation
➢ Ship speed variation



Future: Compare to Ground Truth

● Survey Cruise annotations
● Trawl data

Collaborating with NOAA Northwest Fisheries Science Center



Water Column Sonar  Data

Data: depth, time, frequency

Goals: 
➢ Discover patterns of marine organism activities

○ Distinguish between fish and zooplankton
○ Estimate species abundance
○ Detect migrational patterns

➢ Relate to physical processes and external phenomena

Acoustic Zooplankton Fish Profiler ™


